Substituent Effects on the Tautomer Ratios between the Hydrazone Imine and Diazenyl Enamine Forms in 3-(Arylhydrazono)methyl-2-oxo-1,2-dihydroquinoxalines. Correlation of the Hammett Constants σ_p with the Tautomeric Equilibrium Constants K_T

Yoshihisa Kurasawa*, Tomoyoshi Hosaka and Atsushi Takada

School of Pharmaceutical Sciences, Kitasato University, Shirokane, Minato-ku, Tokyo 108, Japan

Ho Sik Kim

Department of Chemistry, Hyosung Women's University, Gyongsan 713-900, Korea

Yoshihisa Okamoto

Division of Chemistry, College of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara, Kanagawa 228, Japan Received June 10, 1994

The 3-(arylhydrazono)methyl-2-oxo-1,2-dihydroquinoxalines 1a-e and 2a-i showed tautomeric equilibria between the hydrazone imine A and diazenyl enamine B forms in dimethyl sulfoxide media. The substituent effects on the tautomer ratios of A to B in compounds 1a-e and 2a-i were studied by the nmr spectroscopy. The electron-donating or electron-withdrawing p-substituents R^1 in compounds 2a-i represented a tendency to increase the ratios of the tautomer A or the tautomer B, respectively, exhibiting the linear correlation of the Hammett constants σ_p (-0.17 to +0.78) with the tautomer ratios of A to B or the tautomeric equilibrium constants K_T . However, the presence of the ester group R^2 in compounds 1a-e induced the exclusive existence of the tautomer A regardless of the nature of the p-substituents R^1 . In the tautomeric thermodynamic study, the elevating temperature increased the ratios of the hydrazone imine tautomer A in compounds 2a-i. The tautomeric thermodynamic parameters ΔG° , ΔH° and ΔS° were derived from the van't Hoff plots for compounds 2a,b,h,i, wherein the entropy term dominated the free-energy difference between the A and B tautomers.

J. Heterocyclic Chem., 31, 1661 (1994).

In a previous paper [1], we reported the synthesis of the 3-(arylhydrazono)methyl-2-oxo-1,2-dihydroquinoxalines ${\bf 1a,b,d,e}$ and ${\bf 2a,d,h,i}$ (Chart 1), whose nmr spectra in dimethyl sulfoxide showed the tautomeric equilibria between the hydrazone imine ${\bf A}$ and diazenyl enamine ${\bf B}$ forms (Schemes 1,2). Moreover, the presence of the electron-withdrawing p-substituents ${\bf R}^1$ [2a (NO₂), 2d (COOEt)] or electron-donating p-substituents ${\bf R}^1$ [2h (Et), 2i (Me)] exhibited a tendency to increase the ratios of the tautomer ${\bf B}$ or the tau-

Chart 1

1a R¹ = NO₂, R² = COOMe, R³ = H 1b R¹ = NO₂, R² = COOMe, R³ = Me 1d R¹ = Me, R² = COOMe, R³ = H 1c R¹ = Me, R² = COOMe, R³ = Me 2a R¹ = NO₂, R² = R³ = H 2d R¹ = COOEt, R² = R³ = H 2h R¹ = Et, R² = R³ = H 2i R¹ = Me, R² = R³ = H tomer A, respectively, while the presence of the ester group R² in compounds **1a,b,d,e** effected the exclusive existence of the tautomer A regardless of the nature of the p-substituents R¹. In order to explain the above results concretely, we inspected the correlation of the tautomer ratios of A to B with the Hammett constants σ_p reflecting the nature of the psubstituents R¹. Accordingly, additional compounds 1c and **2b,c,f,g** were synthesized to cover the various Hammett constants σ_p (-0.17 to +0.78). As the result, we found the linear correlation of the Hammett constants σ_p with the tautomer ratios of A to B or the tautomeric equilibrium constants K_T in compunds 2a-i (Table 1, Figures 1,2). Furthermore, the elevation of temperature was found to augment the ratios of the hydrazone imine tautomer A in all of compounds 2a-i (Table 2). This paper describes the synthesis of compounds 1c and 2b,c,f,g and the linear correlation of the Hammett constants σ_p with the tautomer ratios of **A** to **B** or the tautomeric equilibrium constants K_T in compounds 2a-i. The tautomeric equilibrium constant temperature dependence and the thermodynamic consideration are also provided for compounds 2a,b,h,i.

Table 1
Data of the Hammett Constants σ_p , Tautomer Ratios of **A** to **B** and Tautomeric Equilibrium Constants K_T for Compounds 1 and 2 [a]

					Tautomer Ratio		
Compound	\mathbb{R}^1	R ²	R ³	σ _p [b]	A	В	K _T [c]
1a	NO_2	COOMe	Н	+0.78 (p-NO ₂)	100	0	
1b	NO_2	COOMe	Me	+0.78 (p-NO ₂)	100	0	
1c	Η	COOMe	Me	0 (p-H)	100	0	
1d	Me	COOMe	H	-0.17 (p-Me)	100	0	
1e	Me	COOMe	Me	-0.17 (<i>p</i> -Me)	100	0	
2a	NO ₂	Н	Н	+0.78 (p-NO ₂)	30	70	0.43
2b	CN	H	H	+0.66 (p-CN)	40	60	0.67
2c	SO ₂ NH ₂	Н	H	$+0.58 (p-SO_2NH_2)$	44	56	0.79
2d	COOEt	Н	H	+0.45 (p-COOEt)	46	54	0.85
2 e	Cl	H	H	+0.23 (p-Cl)	54	46	1.17
2f	F	H	Н	+0.06 (p-F)	60	40	1.50
2g	H	H	H	0 (p-H)	62	38	1.63
2h	Et	H	H	-0.15 (p-Et)	67	33	2.03
2i	Me	Н	Н	-0.17 (<i>p</i> -Me)	67	33	2.03

[[]a] The nmr spectra were measured in deuteriodimethyl sulfoxide at 25° . [b] The values shown herein were picked up from several literatures. [c] $K_T = \frac{1}{2} \frac{1}{2}$

Figure 1. Correlation of the Hammett Constants σ_p with the Tautomer Ratios.

Figure 2. Correlation of the Hammett Constants σ_p with the Tautomeric Equilibrium Constants K_T .

The reaction of 3-methoxycarbonylmethylene-1-

Table 2
Tautomeric Equilibrium Constant Temperature Dependence and Tautomeric Thermodynamic Parameters for Compounds 2a,b,h,i

Compound	Temperature °K	K _T [a]	ΔG° (kcal/mol)	ΔH° (kcal/mol)	ΔS° (cal/mol deg)
2a	298	0.43	0.50	1.97	4.93
(p-NO2)	323	0.56	0.37		4.95
•	348	0.69	0.26		4.92
	373	0.85	0.12		4.96
2b	298	0.67	0.24	1.30	3.57
(p-CN)	323	0.79	0.15		3.56
-	348	0.92	0.06		3.57
	373	1.04	-0.03		3.56
	398	1.17	-0.12		3.58
2h	298	2.03	-0.42	1.44	6.25
(p-Et)	323	2.45	-0.58		6.25
	348	2.85	-0.72		6.23
	373	3.35	-0.90		6.27
2i	298	2.03	-0.42	1.17	5.35
(p-Me)	323	2.33	-0.54		5.31
-	348	2.70	-0.69		5.35
	373	3.00	-0.81		5.33
	398	3.35	-0.96		5.35

[a] $K_T = [hydrazone imine form]/[diazenyl enamine form] or [A]/[B].$

methyl-2-oxo-1,2,3,4-tetrahydroquinoxaline **3** or 3-methyl-2-oxo-1,2-dihydroquinoxaline **4** with benzenediazonium salt gave 1-methyl-3- $[\alpha$ -(phenylhydrazono)-methoxycarbonylmethyl]-2-oxo-1,2-dihydroquinoxaline **1c** or 2-oxo-3-(phenylhydrazono)methyl-1,2-dihydroquinoxaline **2g**, respectively (Scheme 3). The reaction of 3-methyl-2-oxo-1,2-dihydroquinoxaline **4** with *p*-cyano-, *p*-aminosulfonyl- and *p*-fluorobenzenediazonium salts afforded 3-(*p*-cyanophenylhydrazono)methyl-2-oxo-1,2-dihydroquinoxaline **2b**, 3-(*p*-aminosulfonylphenylhydra-

zono)methyl-2-oxo-1,2-dihydroquinoxaline **2c** and 3-(*p*-fluorophenylhydrazono)methyl-2-oxo-1,2-dihydroquinoxaline **2f**, respectively. The synthesis of the *p*-chloro derivative **2e** has already been reported in a previous paper [2,3].

The assignment of the nmr signals due to the tautomers A and/or B using ¹³C-¹H coupling data and the subsequent calculation of the tautomer ratios of A to B in compounds 1a,b,d,e and 2a,d,h,i have already been reported in a previous paper [1]. In this study, the tautomer ratios of A to B in compounds 1c and 2b,c,e,f,g were also calculated from the integral curves of the signals due to the ester methyl, hydrazone CH, diazenyl CH, C₅-H, p-substituent or other CH proton signals [1]. Table 1 summarizes the Hammett constants σ_p , the tautomer ratios of A to \boldsymbol{B} and the tautomeric equilibrium constants \boldsymbol{K}_T for compunds 1a-e and 2a-i. Compounds 1a-e exclusively existed as the tautomer A regardless of the nature of the p-substituents R¹ (Hammett σ_p values, -0.17 to +0.78), and hence there was no correlation of the Hammett constants σ_p with the tautomer ratios. However, compounds 2a-i occurred as the tautomers A and B, and the stepwise decrease in the Hammett σ_p values gradually increased the ratios of the tautomer A, suggesting the correlation of the Hammett constants σ_p with the tautomer ratios of A to B or the tautomeric equilibrium constants K_T. The plots shown in Figures 1 and 2 present the linear correlation of the Hammett constants σ_p with the tautomer ratios (correlation coefficient, r=0.994) and the tautomeric equilibrium constants K_T (correlation coefficient, r=0.995), respectively.

Korewa et al. [4] reported the effects of the substituents R on the ratios of the azo tautomer C in the 4-arylazo-1-naphthols 5 (Scheme 4) in various solvents. Since the substituents of compunds 5 were the o-, m-, p-chloro, o-, m-, p-nitro and o, o-, o, m-, o, p-dichloro groups, the results obtained from these substituent effects did not provide a clear-cut situation representing the correlation of the Hammett constants with the tautomeric equilibrium constants K_T . In addition, the electron-withdrawing substituents stabilize the hydrazone form D in the 4-arylazo-1-naphthols E and 2-arylazo-1-naphthols E (Chart 2) [4]. These results show the opposite effect to that observed in our compounds E, whose hydrazone form E is stabilized by the electron-donating E-substituents E1.

Saeva [5] reported the effect of temperature on the tautomer ratios of C to D together with the tautomeric ther-

Scheme 4

modynamic parameters ΔG° , ΔH° and ΔS° in the 4-ary-lazo-1-naphthol 5 (R = p-OMe) and 1-arylazo-2-naphthol 7 (R = p-OMe), showing that the elevating temperature augmented the ratios of the azo tautomer C. These results are similar to those in our previous paper [6] reporting the tautomeric behavior of the 4-[α -(5-pyrazolylhydrazono)ethoxycarbonylmethyl]-1,2,4-triazolo[4,3-a]quinoxalines 8 (Chart 2). In the present investigation, we also measured the nmr spectra of compounds 2a-i at various temperature (25-125°) to study the tautomeric equilibrium constant temperature dependence. In all of compounds

2a-i, the increasing temperature augmented the ratios of the hydrazone imine tautomer A, giving the opposite results to those of compounds **6**, **7**, **8**. On the other hand, the tautomeric thermodynamic parameters ΔG° , ΔH° and ΔS° (Table 2) were derived from the van't Hoff plots for compounds **2a,b,h,i**, (Figure 3), wherein the entropy term was found to govern the free-energy difference between the hydrazone imine A and diazenyl enamine B tautomers.

In conclusion, the linear correlation of the Hammett constants σ_p with the tautomer ratios of **A** to **B** or the tautomeric equilibrium constants K_T was observed in the

Figure 3. van't Hoff Plots for Compounds 2a,b,h,i

dimethyl sulfoxide media of the 3-(arylhydrazono)-methyl-2-oxo-1,2-dihydroquinoxalines 2a-i. In the tautomeric thermodynamic study, the increasing temperature augmented the ratios of the hydrazone imine tautomer A in compounds 2a-i. The entropy term dominated the free-energy difference between the tautomers A and B in compounds 2a,b,h,i.

EXPERIMENTAL

All melting points were determined on a Yazawa micro melting point BY-2 apparatus and are uncorrected. The ir spectra (potassium bromide) were recorded with a JASCO IRA-1 spectrophotometer. The mass spectra (ms) were determined with a JEOL JMS-01S spectrometer. The nmr spectra were measured in deuteriodimethyl sulfoxide with a VXR-300 spectrometer at 300 MHz. Chemical shifts are given in the δ scale. Elemental analyses were performed on a Perkin-Elmer 240B instrument.

1-Methyl-3- $[\alpha$ -(phenylhydrazono)methoxycarbonylmethyl]-2-oxo-1,2-dihydroquinoxaline 1c.

A solution of sodium nitrite (2.35 g, 32.3 mmoles) in water (30 ml) was added to a solution of aniline (3.01 g, 32.3 mmoles)

in acetic acid (50 ml) with stirring in an ice-water bath to give a vellow clear solution, which was added to a suspension of 3methoxycarbonylmethylene-1-methyl-2-oxo-1,2,3,4-tetrahydroquinoxaline (3 g, 12.9 mmoles) in acetic acid (50 ml). The mixture was heated with stirring on a boiling water bath for 1 hour to afford a brown solution. Evaporation of the solvent in vacuo provided oily residue, which was crystallized from ethanol to furnish orange needles 1c (0.95 g, 22%), mp 179-180°; ir: v cm⁻ 1 1725; ms: m/z 336 (M⁺); pmr: 10.95 (s, 1H, hydrazone NH), 7.92 (dd, J = 8.0 Hz, J = 1.5 Hz, 1H, C₅-H), 7.74 (ddd, J = 8.0Hz, J = 8.0 Hz, J = 1.5 Hz, 1H, C_7 -H), 7.65 (dd, J = 8.0 Hz, J =1.5 Hz, 1H, C_8 -H), 7.45 (ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.5 Hz, 1H, C₆-H), 7.29 (ddd, J = 8.0 Hz, J = 8.0 Hz, J = 1.0 Hz, 2H, m-H), 7.20 (dd, J = 8.0 Hz, J = 1.0 Hz, 2H, o-H), 6.95 (dddd, J =8.0 Hz, J = 8.0 Hz, J = 1.0 Hz, J = 1.OCH₃), 3.66 (s, 3H, NCH₃).

Anal. Calcd. for $C_{18}H_{16}N_4O_3$: C, 64.28; H, 4.80; N, 16.66. Found: C, 64.54; H, 4.94; N, 16.45.

3-(*p*-Cyanophenylhydrazono)methyl-2-oxo-1,2-dihydroquinoxaline **2b**.

A solution of sodium nitrite (1.56 g, 22.6 mmoles) in water (50 ml) was added to a solution of p-cyanoaniline (2.67 g, 22.6 mmoles) in acetic acid (50 ml) with stirring in an ice-water bath to precipitate yellow crystals, to which a solution of 3-methyl-2oxo-1,2-dihydroquinoxaline (3 g, 18.8 mmoles) in acetic acid (100 ml)/water (50 ml). The mixture was heated with stirring on a boiling water bath for 1 hour to precipitate yellow crystals 2b, which were collected by suction filtration and washed with ethanol and then n-hexane (2.42 g, 45%). Recrystallization from N,N-dimethylformamide/ethanol afforded yellow needles, mp above 340°; ir: v cm⁻¹ 2200, 1660, 1600; ms: m/z 289 (M⁺); pmr: (hydrazone imine form A) 14.45 (s, hydrazone NH), 12.45 (s, N_1 -H), 8.10 (dd, J = 1.0 Hz, J = 8.0 Hz, C_5 -H), 7.81 (s, hydrazone CH), 7.75 (d, J = 8.5 Hz, m-H), 7.54 (d, J = 8.5 Hz, o-H); (diazenyl enamine form B) 12.65 (s, N_1 -H), 11.59 (s, N_4 -H), 8.41 (s, diazenyl CH), 7.79 (dd, J = 1.0 Hz, J = 8.0 Hz, C_5 -H), 7.69 (d, J = 8.5 Hz, m-H), 7.22 (d, J = 8.5 Hz, o-H). The C₆-H, C₇-H and C₈-H proton signals for the A and B forms were observed at 7.58-7.42 ppm and 7.37-7.26 ppm.

Anal. Calcd. for $C_{16}H_{11}N_5O$: C, 66.43; H, 3.83; N, 24.21. Found: C, 66.21; H, 3.95; N, 23.92.

3-(p-Aminosulfonylphenylhydrazono)methyl-2-oxo-1,2-dihydroquinoxaline 2c.

A solution of sodium nitrite (1.56 g, 22.6 mmoles) in water (50 ml) was added to a suspension of sulfanylamide (3.89 g, 22.6 mmoles) in acetic acid (50 ml) with stirring in an ice-water bath to give a yellow solution, which was added to a suspension of 3-methyl-2-oxo-1,2-dihydroquinoxaline (3 g, 18.8 mmoles) in acetic acid (50 ml)/water (50 ml). The mixture was heated with stirring on a boiling water bath for 1 hour to precipitate a small amount of orange crystals. The solvent was evaporated in vacuo to afford orange crystals 2c, which were triturated with ethanol/n-hexane and then collected by suction filtration (1.16 g, 18%). Recrystallization from N,N-dimethylformamide/ethanol provided orange needles, mp above 340°; ir: v cm⁻¹ 1650; ms: m/z 343 (M+); pmr: (hydrazone imine form A) 14.50 (s, hydrazone NH), 12.63 (s, N_1 -H), 8.08 (dd, J = 1.0 Hz, J = 8.0 Hz, C_5 -H), 7.78 (s, hydrazone CH), 7.77 (d, J = 8.5 Hz, m-H), 7.54 (d, J= 8.5 Hz, o-H), 7.14 (s, SO_2NH_2); (diazenyl enamine form B) 12.42 (s, N_1 -H), 11.49 (s, N_4 -H), 8.41 (s, diazenyl CH), 7.73 (d, J = 8.5 Hz, m-H), 7.14 (s, SO_2NH_2). The other proton signals were observed at 7.82-7.73 ppm, 7.57-7.43 ppm and 7.37-7.18 ppm.

Anal. Calcd. for $C_{15}H_{13}N_5O_3S$: C, 52.47; H, 3.82; N, 20.40. Found: C, 52.45; H, 3.93; N, 20.51.

3-(p-Fluorophenylhydrazono)methyl-2-oxo-1,2-dihydroquinoxaline **2f**.

A solution of sodium nitrite (1.56 g, 22.6 mmoles) in water (50 ml) was added to a solution of p-fluoroaniline (2.51 g, 22.6 mmoles) in acetic acid (50 ml) with stirring in an ice-water bath to precipitate yellow crystals, to which a solution of 3-methyl-2oxo-1,2-dihydroquinoxaline (3 g, 18.8 mmoles) in acetic acid (100 ml)/water (50ml) was added. The mixture was heated with stirring on a boiling water bath for 1 hour to precipitate orange crystals 2f, which were collected by suction filtration and washed with ethanol and then n-hexane (1.99 g, 38%). Recrystallization from N,N-dimethylformamide/ethanol afforded orange needles, mp 320-321°; ir: v cm-1 1660; ms: m/z 282 (M⁺); pmr: (hydrazone imine form A) 14.48 (s, hydrazone NH), 12.48 (br, N_1 -H), 8.04 (dd, J = 1.0 Hz, J = 8.0 Hz, C_5 -H), 7.68 (s, hydrazone CH), (diazenyl enamine form B) 12.48 (br, N₁-H), 11.21 (s, N_4 -H), 8.31 (s, diazenyl CH), 7.75 (dd, J = 1.0 Hz, J =8.0 Hz, C_5 -H). The other proton signals were observed at 7.54-7.48 ppm and 7.35-7.10 ppm.

Anal. Calcd. for $C_{15}H_{11}FN_4O$: C, 63.82; H, 3.93; N, 19.85. Found: C, 63.54; H, 4.06; N, 19.71.

2-Oxo-3-(phenylhydrazono)methyl-1,2-dihydroquinoxaline 2g.

A solution of sodium nitrite (1.56 g, 22.6 mmoles) in water (50 ml) was added to a solution of aniline (2.10 g, 22.6 mmoles) in acetic acid (50 ml) with stirring in an ice-water bath to give a yellow clear solution, which was added to a suspension of 3-methyl-2-oxo-1,2-dihydroquinoxaline (3 g, 18.8 mmoles) in acetic acid (50 ml)/water (50 ml). The mixture was heated with stirring on a boiling water bath for 30 minutes to precipitate

orange needles 2g, which were collected by suction filtration (620 mg, 12%). Recrystallization from N,N-dimethylformamide/ethanol afforded red needles, mp 303-304°; ir: v cm⁻¹ 1650; ms: m/z 264 (M+); pmr: (hydrazone imine form A) 14.50 (s, hydrazone NH), 12.46 (br, N₁-H), 8.02 (dd, J = 8.0 Hz, J = 1.5 Hz, C₅-H), 7.70 (s, hydrazone CH), 6.99 (dddd, J = 7.0 Hz, J = 7.0 Hz, J = 1.5 Hz, J = 1.5 Hz, p-H), (diazenyl enamine form B) 12.46 (br, N₁-H), 11.21 (s, N₄-H), 8.33 (s, diazenyl CH), 7.76 (dd, J = 8.5 Hz, J = 1.5 Hz, C₅-H), 6.85 (dddd, J = 7.0 Hz, J = 7.0 Hz, J = 1.5 Hz, p-H). The other proton signals were observed at 7.54-7.12 ppm.

Anal. Calcd. for $C_{15}H_{12}N_4O$: C, 68.17; H, 4.58; N, 21.20. Found: C, 68.22; H, 4.72; N, 21.15.

REFERENCES AND NOTES

- [1] Y. Kurasawa, T. Hosaka, K. Ikeda, Y. Matsumoto, A. Ishikura, A. Takada, H. S. Kim and Y. Okamoto, *J. Heterocyclic Chem.*, 31, 527 (1994).
- [2] Y. Kurasawa, K. Yamazaki, S. Tajima, Y. Okamoto and A. Takada, J. Heterocyclic Chem., 23, 967 (1986).
- [3] The tautomer ratio of $\bf A$ to $\bf B$ in compound $\bf 2e$ (p-Cl) had to be calculated from the integral curves of the hydrazone NH and N₄-H proton signals in reference [2], because the nmr spectrum was measured with a 100 MHz instrument. Accordingly, the results in reference [2] did not reflect the accurate tautomer ratio of $\bf A$ to $\bf B$. In the present investigation, the measurement of the nmr spectrum with a 300 MHz instrument afforded the accurate ratio of $\bf A$ to $\bf B$, which was calculated from the integral curves of the hydrazone CH, diazenyl CH and C₅-H proton signals.
- [4] R. A. Cox and E. Buncel, The Chemistry of the Hydrazo, Azo and Azoxy Groups, Part 2, S. Patai, ed, John Wiley and Sons, London, New York, Sydney, Toronto, 1975, pp 838-844 and references cited therein.
 - [5] F. D. Saeva, J. Org. Chem., 36, 3482 (1971).
- [6] Y. Kurasawa, A. Ishikura, K. Ikeda, T. Hosaka, Y. Matsumoto, A. Takada, H. S. Kim and Y. Okamoto, *J. Heterocyclic Chem.*, 31, 233 (1994).